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Improving Pipelined Time Stepping Algorithm
for Distributed Memory Multicomputers

(Menambahbaik Algoritma Sela-Masa Penalian Paip bagi Multikomputer Memori Teragih)

NG KOK FU* & NORHASHIDAH HJ. MOHD ALI

Abstract

Time stepping algorithm with spatial parallelisation is commonly used to solve time dependent partial differential 
equations. Computation in each time step is carried out using all processors available before sequentially advancing to 
the next time step. In cases where few spatial components are involved and there are relatively many processors available 
for use, this will result in fine granularity and decreased scalability. Naturally one alternative is to parallelise the temporal 
domain. Several time parallelisation algorithms have been suggested for the past two decades. One of them is the pipelined 
iterations across time steps. In this pipelined time stepping method, communication however is extensive between time 
steps during the pipelining process. This causes a decrease in performance on distributed memory environment which 
often has high message latency. We present a modified pipelined time stepping algorithm based on delayed pipelining 
and reduced communication strategies to improve overall execution time on a distributed memory environment using 
MPI. Our goal is to reduce the inter-time step communications while providing adequate information for the next time 
step to converge. Numerical result confirms that the improved algorithm is faster than the original pipelined algorithm 
and sequential time stepping algorithm with spatial parallelisation alone. The improved algorithm is most beneficial for 
fine granularity time dependent problems with limited spatial parallelisation.
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Abstrak

Algoritma sela-masa dengan penyelarian ruang umumnya digunakan untuk menyelesaikan persamaan pembezaan separa 
bersandar masa. Pengiraan pada setiap sela masa dilakukan dengan menggunakan kesemua pemproses yang sedia ada 
sebelum mara ke sela masa berikutnya. Dalam kes dengan sedikit sahaja komponen ruang yang terlibat dan terdapat 
banyak pemproses untuk digunakan, algoritma ini akan mengakibatkan kegranulan halus dan pengurangan skalabiliti. 
Lazimnya satu alternatif dalam kes begini adalah menyelarikan domain masa. Beberapa algoritma penyelarian masa 
telah dicadangkan sepanjang dua dekad yang lalu. Salah satu daripadanya ialah lelaran penalian paip merentasi sela 
masa. Walau bagaimanapun dalam kaedah sela masa penalian paip ini, komunikasi di antara sela masa berlaku secara 
meluas sepanjang proses penalian paip. Ini mengakibatkan penurunan prestasi dalam persekitaran memori teragih yang 
lazimnya mempunyai latensi mesej yang tinggi. Kami mencadangkan satu algoritma sela-masa penalian paip terubahsuai 
berdasarkan strategi penalian paip tertangguh dan pengurangan komunikasi bagi memperbaiki masa pelaksanaan 
keseluruhan dalam persekitaran memori teragih menggunakan MPI. Tujuan kami ialah mengurangkan komunikasi antara 
sela masa di samping menyediakan maklumat yang mencukupi bagi penumpuan pada sela masa berikutnya. Keputusan 
berangka menunjukkan algoritma yang ditambahbaik ini adalah lebih pantas berbanding dengan algoritma penalian 
paip asal dan algoritma sela-masa dengan penyelarian ruang sahaja. Algoritma yang ditambahbaik ini adalah paling 
berguna bagi masalah bersandar masa berkegranulan halus dengan penyelarian ruang yang terhad.

Kata kunci: Masalah bersandar masa; multikomputer memori teragih; lelaran penalian paip; sela-masa selari  

Introduction

Many physical phenomena in nature are time-dependent 
and can be modeled by partial differential equations 
(PDEs). These time-dependent PDEs, when discretised in 
both spatial and temporal domain using finite difference 
schemes, will result in a sparse linear system to be solved 
at each time step. Solution at the desired final time often 
requires a large number of time steps to compute. Time-
marching algorithm with spatial parallelisation alone is 

commonly used to arrive at the final time required where 
the linear system at each time step is solved using all 
processors available before advancing to the next time 
step, in a sequential manner, due to the fact that time itself 
is purely sequential. There are various algorithms for 
solving linear systems utilising the spatial parallelisation 
at a time step. This approach remains the most effective 
parallelisation of time dependent PDEs as long as the 
computation to communication ratio at each time step is 
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high enough to produce effective speedups. However the 
scalability of this approach is often lost if the number of 
processors involved exceeded a threshold limit, which 
leads to fine granularity. In these cases, adding more 
processors has little effect on increasing the speedup as 
more processors would increase the cost of communication 
compared to computation. Therefore it would be of great 
value to be able to parallelise the solution process in time 
dimension as well.
	 During the last two decades several algorithms have 
been proposed for solving time dependent PDEs utilising 
time parallelisation. In such algorithms parts of the solution 
later in time are computed simultaneously to parts of the 
solution earlier in time. Examples of such algorithms 
are pipelined iterations, multigrid waveform relaxation, 
and Parareal algorithm (Horton & Vandewalle 1995; 
Lions et al. 2001; Srinivasan & Chandra 2005; Womble 
1990). Frantziskonis et al. (2009) combined the Parareal 
algorithm with the compound wavelet method operating 
at different spatial and temporal scales. Our paper revisits 
the pipelining technique to achieve parallelisation in the 
temporal dimension of time dependent problems. There 
were also some other methods that used similar pipelining 
technique but only on spatial parallelisation (Bonomo & 
Dyksen 1981). Pormann et al. (1998) applied the technique 
to both spatial and temporal dimensions on Cray T3E. In 
this paper, we attempt the technique on a relatively high 
message latency of distributed memory cluster.
	 We introduce here a parallel time stepping algorithm 
based on delayed pipeline approach and reduced inter-
time step communications for solving two dimensional 
parabolic PDEs. The work has been motivated by our 
previous experience of spatial parallelisation in steady-
state problems incorporating the Explicit Group (EG) 
and Explicit Decoupled Group (EDG) methods (Ali & Ng 
2006; Ng & Ali 2008). We found that these explicit group 
methods deteriorate in efficiency when the computation to 
communication ratio drops to a certain value, and using 
more processors for the spatial parallelisation would not 
be beneficial. However, for time dependent problems, we 
should be able to sustain if not increase the efficiency by 
redistributing the available processors for use in temporal 
parallelisation.
	 This paper documented the proposed algorithm in 
solving a two-dimensional heat equation, using MPI in 
a distributed memory multicomputer environment. We 
employ in our experiments Crank-Nicolson (CN) and 
Explicit Group (EG) methods as the iterative solvers for 
the elliptic equations arising at each time step. The paper is 
organised as follows. In the following section we describe 
briefly time stepping method for solving time-dependent 
PDEs and the original pipelined iterations for implementing 
parallel time stepping. Next we describe the proposed 
algorithm followed by the numerical experiments and 
results. Finally, we present the conclusion and some future 
works.

Time stepping algorithm

Sequential time stepping

We consider the time-dependent partial differential 
equations in the form of

	 	 (1)

where L is an elliptic spatial operator, B is the boundary 
operator, and Ω is a spatial domain with boundary ∂Ω. 
The equation is discretized in both spatial and temporal 
dimensions with finite difference schemes. Using a two-
level implicit time stepping scheme, we will have at each 
time step k, an algebraic equation system which is solved 
by iterative scheme 

	 	 (2)

where A is the iteration matrix, bk is the discretized form 
of f, and T is the final time step. Superscript i and subscript 
k indicate the iteration number and time step respectively. 
As a simplification for discussion, we denote the iteration 
scheme (2) as 

	 	 (3)

which shows the dependency of a time step intermediate 
solution of current iteration  on previous intermediate 
solution  and also on previous time step converged 
solution uk–1. The iterative operator Φ can be any iteration 
solver. We use the classical Crank-Nicolson (CN) method 
as well as the Explicit Group (EG) method as the iteration 
solvers in our experiments. Readers are referred to Ng 
& Ali (2008) for details on the implementation of EG 
methods.
	 In a sequential time stepping process of solving (1), 
execution of each time step k is strictly sequential, much 
the same as the time in nature. Once a time step is solved, 
most often by spatial parallelisation, the process advances 
to the next time step using the just computed solution as  and uk–1  in the right hand side of (3). The process continues 
sequentially until the solution at the desired final time has 
been computed. If computation in each time step is costly 
compared to communication incurred, then this approach is 
very effective due to high computation to communication 
ratio. However if the spatial domain is limited and many 
processors are involved, the spatial parallelisation alone 
will result in fine granularity and the efficiency of the 
approach will decline. As a result, many researchers turn 
to time domain as a new dimension for parallelisation.
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Parallel time stepping

We mention here one of the earliest methods to exploit 
time parallelisation was by Womble (1990) and refer to it 
as pipelined iterations method (Zhu 1994). In this parallel 
time stepping method, the iterations at time step k>1 starts 
immediately after the previous time step k-1 has computed 
the value  at the very first iteration, which is used both 
as initial guess and an approximation for uk–1 in the right 
hand side of (3) for the current time step. Computation at 
each time step can be carried out by a single processor 
(i.e. without spatial parallelisation) or group of processors 
(i.e. with spatial parallelisation). The iterations at time 
step k will continue simultaneously with the iterations at 
time step k-1 and all time steps involved proceed like a 
pipeline, hence the name. Each computed value of  of 
time step k-1 at iteration i is passed to time step k as a better 
approximation to uk–1 in its own iteration. These inter-time 
step information transfers will continue until time step k-1 
has computed the converged solution uk–1. The efficiency of 
this parallel time stepping algorithm depends very much on 
the inter-time step communications which provide better 
approximations to uk–1 after each iteration. However, from 
the message passing point of view, this can cause a decrease 
in performance on distributed memory environment which 
often has high message latency. Every iteration i of each 
time step k for k=1…T-1 needs to pass the intermediate 
solution to the next time step. Therefore communication 
is extensive between time steps during the pipelining 
process. Since there is always a start-up cost associated 
with each message, such a large number of inter-time step 
communications will increase the overall execution time 
significantly (Srinivasan & Chandra 2005).

Delayed pipeline reduced communication time 
stepping algorithm

Looking at the high communication costs incurred in 
pipelined iterations implemented in a distributed memory 
machines, therefore we seek to reduce the number of 
communications from a particular time step to the next time 
step, and meanwhile provide adequate information for the 
next time step to converge to the correct solution. We refer to 
our approach as Delayed Pipeline Reduced Communication 
(DPiRC) parallel time stepping algorithm.
	 In contrast with the original pipelined iteration, a time 
step k in DPiRC approach will only send its intermediate 
solution to next time step k+1 after a number of iterations 
has elapsed. This is to enable the next time step to receive 
a more accurate approximation of uk. Using this delayed 
intermediate solution, the time step k+1 will then commence 
its own iterations concurrently, just as in pipelined iterations 
method. When the iteration at time step k finally has 
converged, it will then send the converged solution to time 
step k+1 for computing the correct solution. Hence, we 
have reduced the number of inter-time step communication 
to only two, one to start a new time step iteration and the 
other to ensure the new time step converges to a correct 
solution. This reduces significantly the overall execution 

time compared to the original pipelined iteration method in 
a high message latency environment.
	 We now define the algorithm more formally. Let us 
denote u0 as the known initial value at time step 0, and  
as the intermediate solution of time step k at iteration i, 
which is computed using an iterative solver as in (3). Let d 
denotes the predetermined optimal number of iterations to 
delay the first inter-time step communication in each time 
step. The pseudocode of the DPiRC algorithm is given in 
Figure 1. A sample procession of three time steps using 
the algorithm is given in Figure 2.

Numerical results and Discussion

We tested the DPiRC method using the following model 
problem, a two-dimensional diffusion equation

	 	 (4)

where the initial and boundary conditions are defined to 
satisfy the exact solution 

	 u(x, y, t) = sin x + sin y e–t – 4	 (5)

	 The experiments were run at a distributed memory 
computing cluster (Stealth cluster) available at the School 
of Computer Sciences, Universiti Sains Malaysia. The 
cluster consists of 1 unit of Sun Fire 280R with 2 processors 
(900MHz UltraSPARC® III Cu Superscalar SPARC® V9), 
2GB RAM, 8MB L2 Cache, and 4 unit of Sun Fire V210 
each with 2 processors (1002 Mhz UltraSPARC IIIi), 2GB 
RAM , 1MB of level 2 cache. The operating system used is 
Solaris9 (SunOS 2.9) with Sun HPC ClusterTools 5 and Sun 
MPI 6.0. The cluster was isolated from other network traffic 
and put under exclusive use during the experiments. 
	 We implemented the DPiRC algorithm using MPI 
parallel libraries (Gropp et al. 1999) in SPMD master-slave 
programming approach (Pacheco 1997). We used two 
iterative solvers in solving (4): Crank-Nicolson (CN) and 
Explicit Group (EG) methods. For comparison purposes, 
we modified the same code to run as the sequential time 
stepping (SeqTS) and the pipelined iterations (PI) versions. 
Each program was run for 10 times and the best execution 
time was chosen for performance comparison.
	 Four performance metrics were measured and reported 
here, namely 
(1)	 execution time, the elapsed time in seconds from 

synchronised start of data initialisation until end of 
all solutions

(2)	 inter-time step (ITS) communications, the total count 
of data transfers from a time step to the next for all 
k<T (applicable to PI and DPiRC methods only)

(3)	 sequential iterations, the value of  where,  
mk is the number of iterations for time step k to 
converge, and ck is the iteration at which a time step 
k receives the previous time step converged solution 
(note that c1 = 0)
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Figure 1. Delayed pipeline reduced communication (DPiRC) time stepping algorithm

Figure 2. Procession of DPiRC iterations



	 	 1045

(4)	 maximum error, the largest difference between final 
computed solutions and the exact solution. 

	 We tested the algorithm with two problem sizes, 
n=49 and n=97, each using EG and Crank-Nicolson as the 
iterative solvers. These problem sizes have very limited 
spatial parallelisation in respect to both iterative solvers, 
especially n=49. We would expect to gain the benefit of 
parallelisation by exploiting the temporal dimension using 
the proposed method. The model problem (4) is solved 
for final time = 2s with 200 time steps, and termination 
epsilon value for iterative solver is 1e-5 in all cases. We use 
optimal value d=4 for problem size n=49, and d=15 for 
problem size n=97. For parallel execution of programs, 
we use p=2, 3 and 4 processors. The results of the four 
performance metrics for n=49 are summarized in Table 1 
and Table 2 , n=97 in Table 3 and Table 4. Table 5 to Table 
8 show the corresponding speed-up and efficiency values 
computed from Table 1 to Table 4 respectively. Figure 
3 to Figure 6 are speed-up graphs for the corresponding 
Table 5 to Table 8.
	 The results from Table 1 to Table 4 show that 
the proposed DPiRC algorithm is faster than the 

Table 1.  Performance of DPiRC compared to SeqTS and PI, 
using EG as iterative solver with n=49

#Proc Method Exec Time ITS 
Comms

Seq Iters Max Error

1 SeqTS 1.1453 - 2760 5.52E-05

2
SeqTS
PI
DPiRC

3.0235
1.0576
0.8034

-
1554
398

2760
1560
2292

5.52E-05
6.54E-05
7.84E-05

3
SeqTS
PI
DPiRC

3.1349
0.9445
0.6872

-
2662
398

2760
1122
1844

5.52E-05
7.29E-05
7.07E-05

4
SeqTS
PI
DPiRC

3.6826
0.8926
0.6245

-
3518
398

2760
991
1863

5.52E-05
2.31E-05
7.42E-05

Table 2.  Performance of DPiRC compared to SeqTS and PI, 
using CN as iterative solver with n=49

#Proc Method Exec Time ITS 
Comms

Seq Iters Max Error

1 SeqTS 1.4718 - 3689 1.05E-04

2
SeqTS
PI
DPiRC

2.9978
1.3920
1.0358

-
2068
398

3689
2076
2292

1.05E-04
1.26E-04
1.41E-04

3
SeqTS
PI
DPiRC

3.6252
1.2198
0.9288

-
3504
398

3689
1518
2515

1.05E-04
1.49E-04
1.57E-04

4
SeqTS
PI
DPiRC

4.4336
1.1637
0.8753

-
4763
398

3689
1416
2516

1.05E-04
2.13E-05
1.41E-04

Table 3. Performance of DPiRC compared to SeqTS and PI, 
using EG as iterative solver with n=97

#Proc Method Exec Time ITS 
Comms

Seq Iters Max Error

1 SeqTS 7.6802 - 4642 1.40E-04

2
SeqTS
PI
DPiRC

8.0813
8.0059
5.5616

-
2596
398

4642
2606
3310

1.40E-04
1.78E-04
1.63E-04

3
SeqTS
PI
DPiRC

7.2764
7.1678
4.9730

-
4363
398

4642
2128
3170

1.40E-04
4.36E-05
1.67E-04

4
SeqTS
PI
DPiRC

7.6057
6.6124
4.6290

-
6776
398

4642
2248
3168

1.40E-04
1.52E-05
1.70E-0

	 Table 4.  Performance of DPiRC compared to SeqTS and 
PI, using CN as iterative solver with n=97

#Proc Method Exec Time ITS 
Comms

Seq Iters Max Error

1 SeqTS 8.3075 - 5829 9.31E-05

2
SeqTS
PI
DPiRC

7.6013
9.3373
5.8411

-
3289
398

5829
3305
3971

9.31E-05
6.04E-05
2.21E-04

3
SeqTS
PI
DPiRC

7.8344
11.6849
6.0727

-
7691
398

5829
3831
4470

9.31E-05
4.71E-05
1.89E-04

4
SeqTS
PI
DPiRC

8.8114
13.1687
6.2145

-
12358
398

5829
4051
4679

9.31E-05
3.85E-05
1.95E-04

Table 5.  Speedup and efficiency of DPiRC compared to 
SeqTS and PI using EG as iterative solver with n=49

#Proc Method Exec Time Speed up Efficiency

1 SeqTS 1.1453 1.0000 100.0%

2
SeqTS
PI
DPiRC

3.0235
1.0576
0.8034

0.3788
1.0829
1.4256

18.9%
54.1%
71.3%

3
SeqTS
PI
DPiRC

3.1349
0.9445
0.6872

0.3653
1.2126
1.6666

12.2%
40.4%
55.6%

4
SeqTS
PI
DPiRC

3.6826
0.8926
0.6245

0.3110
1.2831
1.8339

7.8%
32.1%
45.8%

pipelined iterations (PI) in solving the model problem. 
This reduction of execution time in all test cases is 
expected as the DPiRC algorithm reduces inter-time 
step communication to merely two counts in all but the 
final time step. This can be seen from an output excerpts 
(Figure 7) from a test case where p=3 of Table 1, with 
only output from the first 20 time steps shown. The output 
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Table 6. Speedup and efficiency of DPiRC compared to SeqTS 
and PI using CN as iterative solver with n=49

#Proc Method Exec Time Speed up Efficiency
1 SeqTS 1.4718 1.0000 100.0%

2
SeqTS
PI
DPiRC

2.9978
1.3920
1.0358

0.4910
1.0573
1.4209

24.5%
52.9%
71.0%

3
SeqTS
PI
DPiRC

3.6252
1.2198
0.9288

0.4060
1.2066
1.5846

13.5%
40.2%
52.8%

4
SeqTS
PI
DPiRC

4.4336
1.1637
0.8753

0.3320
1.2648
1.6814

8.3%
31.6%
42.0%

Table 7. Speedup and efficiency of DPiRC compared to SeqTS 
and PI using EG as iterative solver with n=97

#Proc Method Exec Time Speed up Efficiency

1 SeqTS 7.6802 1.0000 100.0%

2
SeqTS
PI
DPiRC

8.0813
8.0059
5.5616

0.9504
0.9593
1.3809

47.5%
48.0%
69.0%

3
SeqTS
PI
DPiRC

7.2764
7.1678
4.9730

1.0555
1.0715
1.5444

35.2%
35.7%
51.5%

4
SeqTS
PI
DPiRC

7.6057
6.6124
4.6290

1.0098
1.1615
1.6591

25.2%
29.0%
41.5%

Table 8. Speedup and efficiency of DPiRC compared to 
SeqTS and PI using CN as iterative solver with n=97

#Proc Method Exec Time Speed up Efficiency

1 SeqTS 8.3075 1.0000 100.0%

2
SeqTS
PI
DPiRC

7.6013
9.3373
5.8411

1.0929
0.8897
1.4223

54.6%
44.5%
71.1%

3
SeqTS
PI
DPiRC

7.8344
11.6849
6.0727

1.0604
0.7110
1.3680

35.3%
23.7%
45.6%

4
SeqTS
PI
DPiRC

8.8114
13.1687
6.2145

0.9428
0.6308
1.3368

23.6%
15.8%
33.4%

Figure 3. Speedup Performance of DPiRC compared to SeqTS 
and PI, using EG as iterative solver for n=49

No. of Processors

Sp
ee

du
p

shows that for pipelined iterations algorithm, the inter-time 
step communications (# ITS comms) occur for as many as 
the number of iterations in each time step, in contrast with 
DPiRC algorithm which incurs only two communications 
at each time step before the final time. The price of reducing 
the amount of information transfer is the increase of the 
number of sequential iterations (# Seq Iters) in each time 
step. However, the reduction of communication cost is 
more dominant than the increase of computation cost, 
hence decreasing the total execution time.

Figure 4. Speedup Performance of DPiRC compared to SeqTS 
and PI, using CN as iterative solver for n=49

No. of Processors

Sp
ee

du
p

	 The decrease of execution time is most apparent 
in problem size where spatial parallelisation is limited 
(n=49) as shown in Table 1 and Table 2. In this fine 
granularity problem, using more than one processor 
for spatial parallelisation (SeqTS with p>1) causes the 
execution time to increase due to the high communication 
to computation ratio. By using the proposed algorithm, 
we have demonstrated that we still could achieve some 
degree of efficiency when spatial parallelisation failed to 
do so. As shown in Table 5 and Table 6, DPiRC algorithm 
is able to maintain higher efficiency ranging from 45.8% 
to 71.3% and 42.0% to 71.1% for the respective test cases 
when spatial parallelisation alone caused the efficiency to 
drop to as low as 7.8% and 8.3%. Similar results pattern 
can also be seen in Table 7 and Table 8 for n=97. These 
results demonstrated the feasibility and possible benefit of 
parallelisation in time dimension when parallelisation in 
space dimension alone failed to reduce the execution time. 
However, the original pipelined iterations (PI) algorithm 
has low efficiency in distributed memory computing 
environment due to the algorithm’s nature of extensive 
communication labor. By reducing the inter-time step 
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communications in the proposed algorithm we achieved 
better efficiency than the pipelined iterations algorithm, as 
shown in Table 5 to Table 8.

Conclusion 

In this paper, an improved pipelined algorithm has been 
proposed for parallelising time stepping process in solving 
time dependent problems and some preliminary results has 
been reported. We have shown that the algorithm is most 
beneficial for problems with limited spatial parallelisation 
or when spatial parallelisation alone has reached the 
efficiency limit. However, we see time parallelisation as 
an addition to spatial parallelisation rather as a competitor. 
We can and should combine both. If a given problem can 
be parallelized efficiently through spatial decomposition 
then a group of processors can be assigned to a time step. 
More study will be carried out to further investigate and to 
derive a performance analysis model of the algorithm. This 
includes the determination of the optimal or near optimal 
pipeline delay value, d. 

Figure 5. Speedup Performance of DPiRC compared to SeqTS 
and PI, using EG as iterative solver for n=97

No. of Processors

Sp
ee

du
p

Figure 7. Communication and sequential iteration counts for test cases of Table 1 for the first 20 time steps

Figure 6. Speedup Performance of DPiRC compared to SeqTS 
and PI, using CN as iterative solver for n=97

No. of Processors

Sp
ee

du
p
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