
Sains Malaysiana 39(6)(2010): 1041–1048	

Improving Pipelined Time Stepping Algorithm
for Distributed Memory Multicomputers

(Menambahbaik Algoritma Sela-Masa Penalian Paip bagi Multikomputer Memori Teragih)

NG KOK FU* & NORHASHIDAH HJ. MOHD ALI

Abstract

Time stepping algorithm with spatial parallelisation is commonly used to solve time dependent partial differential
equations. Computation in each time step is carried out using all processors available before sequentially advancing to
the next time step. In cases where few spatial components are involved and there are relatively many processors available
for use, this will result in fine granularity and decreased scalability. Naturally one alternative is to parallelise the temporal
domain. Several time parallelisation algorithms have been suggested for the past two decades. One of them is the pipelined
iterations across time steps. In this pipelined time stepping method, communication however is extensive between time
steps during the pipelining process. This causes a decrease in performance on distributed memory environment which
often has high message latency. We present a modified pipelined time stepping algorithm based on delayed pipelining
and reduced communication strategies to improve overall execution time on a distributed memory environment using
MPI. Our goal is to reduce the inter-time step communications while providing adequate information for the next time
step to converge. Numerical result confirms that the improved algorithm is faster than the original pipelined algorithm
and sequential time stepping algorithm with spatial parallelisation alone. The improved algorithm is most beneficial for
fine granularity time dependent problems with limited spatial parallelisation.

Keywords: Distributed memory multicomputer; parallel time stepping; pipelining iteration; time dependent problem

Abstrak

Algoritma sela-masa dengan penyelarian ruang umumnya digunakan untuk menyelesaikan persamaan pembezaan separa
bersandar masa. Pengiraan pada setiap sela masa dilakukan dengan menggunakan kesemua pemproses yang sedia ada
sebelum mara ke sela masa berikutnya. Dalam kes dengan sedikit sahaja komponen ruang yang terlibat dan terdapat
banyak pemproses untuk digunakan, algoritma ini akan mengakibatkan kegranulan halus dan pengurangan skalabiliti.
Lazimnya satu alternatif dalam kes begini adalah menyelarikan domain masa. Beberapa algoritma penyelarian masa
telah dicadangkan sepanjang dua dekad yang lalu. Salah satu daripadanya ialah lelaran penalian paip merentasi sela
masa. Walau bagaimanapun dalam kaedah sela masa penalian paip ini, komunikasi di antara sela masa berlaku secara
meluas sepanjang proses penalian paip. Ini mengakibatkan penurunan prestasi dalam persekitaran memori teragih yang
lazimnya mempunyai latensi mesej yang tinggi. Kami mencadangkan satu algoritma sela-masa penalian paip terubahsuai
berdasarkan strategi penalian paip tertangguh dan pengurangan komunikasi bagi memperbaiki masa pelaksanaan
keseluruhan dalam persekitaran memori teragih menggunakan MPI. Tujuan kami ialah mengurangkan komunikasi antara
sela masa di samping menyediakan maklumat yang mencukupi bagi penumpuan pada sela masa berikutnya. Keputusan
berangka menunjukkan algoritma yang ditambahbaik ini adalah lebih pantas berbanding dengan algoritma penalian
paip asal dan algoritma sela-masa dengan penyelarian ruang sahaja. Algoritma yang ditambahbaik ini adalah paling
berguna bagi masalah bersandar masa berkegranulan halus dengan penyelarian ruang yang terhad.

Kata kunci: Masalah bersandar masa; multikomputer memori teragih; lelaran penalian paip; sela-masa selari

Introduction

Many physical phenomena in nature are time-dependent
and can be modeled by partial differential equations
(PDEs). These time-dependent PDEs, when discretised in
both spatial and temporal domain using finite difference
schemes, will result in a sparse linear system to be solved
at each time step. Solution at the desired final time often
requires a large number of time steps to compute. Time-
marching algorithm with spatial parallelisation alone is

commonly used to arrive at the final time required where
the linear system at each time step is solved using all
processors available before advancing to the next time
step, in a sequential manner, due to the fact that time itself
is purely sequential. There are various algorithms for
solving linear systems utilising the spatial parallelisation
at a time step. This approach remains the most effective
parallelisation of time dependent PDEs as long as the
computation to communication ratio at each time step is

1042	

high enough to produce effective speedups. However the
scalability of this approach is often lost if the number of
processors involved exceeded a threshold limit, which
leads to fine granularity. In these cases, adding more
processors has little effect on increasing the speedup as
more processors would increase the cost of communication
compared to computation. Therefore it would be of great
value to be able to parallelise the solution process in time
dimension as well.
	 During the last two decades several algorithms have
been proposed for solving time dependent PDEs utilising
time parallelisation. In such algorithms parts of the solution
later in time are computed simultaneously to parts of the
solution earlier in time. Examples of such algorithms
are pipelined iterations, multigrid waveform relaxation,
and Parareal algorithm (Horton & Vandewalle 1995;
Lions et al. 2001; Srinivasan & Chandra 2005; Womble
1990). Frantziskonis et al. (2009) combined the Parareal
algorithm with the compound wavelet method operating
at different spatial and temporal scales. Our paper revisits
the pipelining technique to achieve parallelisation in the
temporal dimension of time dependent problems. There
were also some other methods that used similar pipelining
technique but only on spatial parallelisation (Bonomo &
Dyksen 1981). Pormann et al. (1998) applied the technique
to both spatial and temporal dimensions on Cray T3E. In
this paper, we attempt the technique on a relatively high
message latency of distributed memory cluster.
	 We introduce here a parallel time stepping algorithm
based on delayed pipeline approach and reduced inter-
time step communications for solving two dimensional
parabolic PDEs. The work has been motivated by our
previous experience of spatial parallelisation in steady-
state problems incorporating the Explicit Group (EG)
and Explicit Decoupled Group (EDG) methods (Ali & Ng
2006; Ng & Ali 2008). We found that these explicit group
methods deteriorate in efficiency when the computation to
communication ratio drops to a certain value, and using
more processors for the spatial parallelisation would not
be beneficial. However, for time dependent problems, we
should be able to sustain if not increase the efficiency by
redistributing the available processors for use in temporal
parallelisation.
	 This paper documented the proposed algorithm in
solving a two-dimensional heat equation, using MPI in
a distributed memory multicomputer environment. We
employ in our experiments Crank-Nicolson (CN) and
Explicit Group (EG) methods as the iterative solvers for
the elliptic equations arising at each time step. The paper is
organised as follows. In the following section we describe
briefly time stepping method for solving time-dependent
PDEs and the original pipelined iterations for implementing
parallel time stepping. Next we describe the proposed
algorithm followed by the numerical experiments and
results. Finally, we present the conclusion and some future
works.

Time stepping algorithm

Sequential time stepping

We consider the time-dependent partial differential
equations in the form of

	 	 (1)

where L is an elliptic spatial operator, B is the boundary
operator, and Ω is a spatial domain with boundary ∂Ω.
The equation is discretized in both spatial and temporal
dimensions with finite difference schemes. Using a two-
level implicit time stepping scheme, we will have at each
time step k, an algebraic equation system which is solved
by iterative scheme

	 	 (2)

where A is the iteration matrix, bk is the discretized form
of f, and T is the final time step. Superscript i and subscript
k indicate the iteration number and time step respectively.
As a simplification for discussion, we denote the iteration
scheme (2) as

	 	 (3)

which shows the dependency of a time step intermediate
solution of current iteration on previous intermediate
solution and also on previous time step converged
solution uk–1. The iterative operator Φ can be any iteration
solver. We use the classical Crank-Nicolson (CN) method
as well as the Explicit Group (EG) method as the iteration
solvers in our experiments. Readers are referred to Ng
& Ali (2008) for details on the implementation of EG
methods.
	 In a sequential time stepping process of solving (1),
execution of each time step k is strictly sequential, much
the same as the time in nature. Once a time step is solved,
most often by spatial parallelisation, the process advances
to the next time step using the just computed solution as and uk–1 in the right hand side of (3). The process continues
sequentially until the solution at the desired final time has
been computed. If computation in each time step is costly
compared to communication incurred, then this approach is
very effective due to high computation to communication
ratio. However if the spatial domain is limited and many
processors are involved, the spatial parallelisation alone
will result in fine granularity and the efficiency of the
approach will decline. As a result, many researchers turn
to time domain as a new dimension for parallelisation.

	 	 1043

Parallel time stepping

We mention here one of the earliest methods to exploit
time parallelisation was by Womble (1990) and refer to it
as pipelined iterations method (Zhu 1994). In this parallel
time stepping method, the iterations at time step k>1 starts
immediately after the previous time step k-1 has computed
the value at the very first iteration, which is used both
as initial guess and an approximation for uk–1 in the right
hand side of (3) for the current time step. Computation at
each time step can be carried out by a single processor
(i.e. without spatial parallelisation) or group of processors
(i.e. with spatial parallelisation). The iterations at time
step k will continue simultaneously with the iterations at
time step k-1 and all time steps involved proceed like a
pipeline, hence the name. Each computed value of of
time step k-1 at iteration i is passed to time step k as a better
approximation to uk–1 in its own iteration. These inter-time
step information transfers will continue until time step k-1
has computed the converged solution uk–1. The efficiency of
this parallel time stepping algorithm depends very much on
the inter-time step communications which provide better
approximations to uk–1 after each iteration. However, from
the message passing point of view, this can cause a decrease
in performance on distributed memory environment which
often has high message latency. Every iteration i of each
time step k for k=1…T-1 needs to pass the intermediate
solution to the next time step. Therefore communication
is extensive between time steps during the pipelining
process. Since there is always a start-up cost associated
with each message, such a large number of inter-time step
communications will increase the overall execution time
significantly (Srinivasan & Chandra 2005).

Delayed pipeline reduced communication time
stepping algorithm

Looking at the high communication costs incurred in
pipelined iterations implemented in a distributed memory
machines, therefore we seek to reduce the number of
communications from a particular time step to the next time
step, and meanwhile provide adequate information for the
next time step to converge to the correct solution. We refer to
our approach as Delayed Pipeline Reduced Communication
(DPiRC) parallel time stepping algorithm.
	 In contrast with the original pipelined iteration, a time
step k in DPiRC approach will only send its intermediate
solution to next time step k+1 after a number of iterations
has elapsed. This is to enable the next time step to receive
a more accurate approximation of uk. Using this delayed
intermediate solution, the time step k+1 will then commence
its own iterations concurrently, just as in pipelined iterations
method. When the iteration at time step k finally has
converged, it will then send the converged solution to time
step k+1 for computing the correct solution. Hence, we
have reduced the number of inter-time step communication
to only two, one to start a new time step iteration and the
other to ensure the new time step converges to a correct
solution. This reduces significantly the overall execution

time compared to the original pipelined iteration method in
a high message latency environment.
	 We now define the algorithm more formally. Let us
denote u0 as the known initial value at time step 0, and
as the intermediate solution of time step k at iteration i,
which is computed using an iterative solver as in (3). Let d
denotes the predetermined optimal number of iterations to
delay the first inter-time step communication in each time
step. The pseudocode of the DPiRC algorithm is given in
Figure 1. A sample procession of three time steps using
the algorithm is given in Figure 2.

Numerical results and Discussion

We tested the DPiRC method using the following model
problem, a two-dimensional diffusion equation

	 	 (4)

where the initial and boundary conditions are defined to
satisfy the exact solution

	 u(x, y, t) = sin x + sin y e–t – 4	 (5)

	 The experiments were run at a distributed memory
computing cluster (Stealth cluster) available at the School
of Computer Sciences, Universiti Sains Malaysia. The
cluster consists of 1 unit of Sun Fire 280R with 2 processors
(900MHz UltraSPARC® III Cu Superscalar SPARC® V9),
2GB RAM, 8MB L2 Cache, and 4 unit of Sun Fire V210
each with 2 processors (1002 Mhz UltraSPARC IIIi), 2GB
RAM , 1MB of level 2 cache. The operating system used is
Solaris9 (SunOS 2.9) with Sun HPC ClusterTools 5 and Sun
MPI 6.0. The cluster was isolated from other network traffic
and put under exclusive use during the experiments.
	 We implemented the DPiRC algorithm using MPI
parallel libraries (Gropp et al. 1999) in SPMD master-slave
programming approach (Pacheco 1997). We used two
iterative solvers in solving (4): Crank-Nicolson (CN) and
Explicit Group (EG) methods. For comparison purposes,
we modified the same code to run as the sequential time
stepping (SeqTS) and the pipelined iterations (PI) versions.
Each program was run for 10 times and the best execution
time was chosen for performance comparison.
	 Four performance metrics were measured and reported
here, namely
(1)	 execution time, the elapsed time in seconds from

synchronised start of data initialisation until end of
all solutions

(2)	 inter-time step (ITS) communications, the total count
of data transfers from a time step to the next for all
k<T (applicable to PI and DPiRC methods only)

(3)	 sequential iterations, the value of where,
mk is the number of iterations for time step k to
converge, and ck is the iteration at which a time step
k receives the previous time step converged solution
(note that c1 = 0)

1044	

Figure 1. Delayed pipeline reduced communication (DPiRC) time stepping algorithm

Figure 2. Procession of DPiRC iterations

	 	 1045

(4)	 maximum error, the largest difference between final
computed solutions and the exact solution.

	 We tested the algorithm with two problem sizes,
n=49 and n=97, each using EG and Crank-Nicolson as the
iterative solvers. These problem sizes have very limited
spatial parallelisation in respect to both iterative solvers,
especially n=49. We would expect to gain the benefit of
parallelisation by exploiting the temporal dimension using
the proposed method. The model problem (4) is solved
for final time = 2s with 200 time steps, and termination
epsilon value for iterative solver is 1e-5 in all cases. We use
optimal value d=4 for problem size n=49, and d=15 for
problem size n=97. For parallel execution of programs,
we use p=2, 3 and 4 processors. The results of the four
performance metrics for n=49 are summarized in Table 1
and Table 2 , n=97 in Table 3 and Table 4. Table 5 to Table
8 show the corresponding speed-up and efficiency values
computed from Table 1 to Table 4 respectively. Figure
3 to Figure 6 are speed-up graphs for the corresponding
Table 5 to Table 8.
	 The results from Table 1 to Table 4 show that
the proposed DPiRC algorithm is faster than the

Table 1. Performance of DPiRC compared to SeqTS and PI,
using EG as iterative solver with n=49

#Proc Method Exec Time ITS
Comms

Seq Iters Max Error

1 SeqTS 1.1453 - 2760 5.52E-05

2
SeqTS
PI
DPiRC

3.0235
1.0576
0.8034

-
1554
398

2760
1560
2292

5.52E-05
6.54E-05
7.84E-05

3
SeqTS
PI
DPiRC

3.1349
0.9445
0.6872

-
2662
398

2760
1122
1844

5.52E-05
7.29E-05
7.07E-05

4
SeqTS
PI
DPiRC

3.6826
0.8926
0.6245

-
3518
398

2760
991
1863

5.52E-05
2.31E-05
7.42E-05

Table 2. Performance of DPiRC compared to SeqTS and PI,
using CN as iterative solver with n=49

#Proc Method Exec Time ITS
Comms

Seq Iters Max Error

1 SeqTS 1.4718 - 3689 1.05E-04

2
SeqTS
PI
DPiRC

2.9978
1.3920
1.0358

-
2068
398

3689
2076
2292

1.05E-04
1.26E-04
1.41E-04

3
SeqTS
PI
DPiRC

3.6252
1.2198
0.9288

-
3504
398

3689
1518
2515

1.05E-04
1.49E-04
1.57E-04

4
SeqTS
PI
DPiRC

4.4336
1.1637
0.8753

-
4763
398

3689
1416
2516

1.05E-04
2.13E-05
1.41E-04

Table 3. Performance of DPiRC compared to SeqTS and PI,
using EG as iterative solver with n=97

#Proc Method Exec Time ITS
Comms

Seq Iters Max Error

1 SeqTS 7.6802 - 4642 1.40E-04

2
SeqTS
PI
DPiRC

8.0813
8.0059
5.5616

-
2596
398

4642
2606
3310

1.40E-04
1.78E-04
1.63E-04

3
SeqTS
PI
DPiRC

7.2764
7.1678
4.9730

-
4363
398

4642
2128
3170

1.40E-04
4.36E-05
1.67E-04

4
SeqTS
PI
DPiRC

7.6057
6.6124
4.6290

-
6776
398

4642
2248
3168

1.40E-04
1.52E-05
1.70E-0

	 Table 4. Performance of DPiRC compared to SeqTS and
PI, using CN as iterative solver with n=97

#Proc Method Exec Time ITS
Comms

Seq Iters Max Error

1 SeqTS 8.3075 - 5829 9.31E-05

2
SeqTS
PI
DPiRC

7.6013
9.3373
5.8411

-
3289
398

5829
3305
3971

9.31E-05
6.04E-05
2.21E-04

3
SeqTS
PI
DPiRC

7.8344
11.6849
6.0727

-
7691
398

5829
3831
4470

9.31E-05
4.71E-05
1.89E-04

4
SeqTS
PI
DPiRC

8.8114
13.1687
6.2145

-
12358
398

5829
4051
4679

9.31E-05
3.85E-05
1.95E-04

Table 5. Speedup and efficiency of DPiRC compared to
SeqTS and PI using EG as iterative solver with n=49

#Proc Method Exec Time Speed up Efficiency

1 SeqTS 1.1453 1.0000 100.0%

2
SeqTS
PI
DPiRC

3.0235
1.0576
0.8034

0.3788
1.0829
1.4256

18.9%
54.1%
71.3%

3
SeqTS
PI
DPiRC

3.1349
0.9445
0.6872

0.3653
1.2126
1.6666

12.2%
40.4%
55.6%

4
SeqTS
PI
DPiRC

3.6826
0.8926
0.6245

0.3110
1.2831
1.8339

7.8%
32.1%
45.8%

pipelined iterations (PI) in solving the model problem.
This reduction of execution time in all test cases is
expected as the DPiRC algorithm reduces inter-time
step communication to merely two counts in all but the
final time step. This can be seen from an output excerpts
(Figure 7) from a test case where p=3 of Table 1, with
only output from the first 20 time steps shown. The output

1046	

Table 6. Speedup and efficiency of DPiRC compared to SeqTS
and PI using CN as iterative solver with n=49

#Proc Method Exec Time Speed up Efficiency
1 SeqTS 1.4718 1.0000 100.0%

2
SeqTS
PI
DPiRC

2.9978
1.3920
1.0358

0.4910
1.0573
1.4209

24.5%
52.9%
71.0%

3
SeqTS
PI
DPiRC

3.6252
1.2198
0.9288

0.4060
1.2066
1.5846

13.5%
40.2%
52.8%

4
SeqTS
PI
DPiRC

4.4336
1.1637
0.8753

0.3320
1.2648
1.6814

8.3%
31.6%
42.0%

Table 7. Speedup and efficiency of DPiRC compared to SeqTS
and PI using EG as iterative solver with n=97

#Proc Method Exec Time Speed up Efficiency

1 SeqTS 7.6802 1.0000 100.0%

2
SeqTS
PI
DPiRC

8.0813
8.0059
5.5616

0.9504
0.9593
1.3809

47.5%
48.0%
69.0%

3
SeqTS
PI
DPiRC

7.2764
7.1678
4.9730

1.0555
1.0715
1.5444

35.2%
35.7%
51.5%

4
SeqTS
PI
DPiRC

7.6057
6.6124
4.6290

1.0098
1.1615
1.6591

25.2%
29.0%
41.5%

Table 8. Speedup and efficiency of DPiRC compared to
SeqTS and PI using CN as iterative solver with n=97

#Proc Method Exec Time Speed up Efficiency

1 SeqTS 8.3075 1.0000 100.0%

2
SeqTS
PI
DPiRC

7.6013
9.3373
5.8411

1.0929
0.8897
1.4223

54.6%
44.5%
71.1%

3
SeqTS
PI
DPiRC

7.8344
11.6849
6.0727

1.0604
0.7110
1.3680

35.3%
23.7%
45.6%

4
SeqTS
PI
DPiRC

8.8114
13.1687
6.2145

0.9428
0.6308
1.3368

23.6%
15.8%
33.4%

Figure 3. Speedup Performance of DPiRC compared to SeqTS
and PI, using EG as iterative solver for n=49

No. of Processors

Sp
ee

du
p

shows that for pipelined iterations algorithm, the inter-time
step communications (# ITS comms) occur for as many as
the number of iterations in each time step, in contrast with
DPiRC algorithm which incurs only two communications
at each time step before the final time. The price of reducing
the amount of information transfer is the increase of the
number of sequential iterations (# Seq Iters) in each time
step. However, the reduction of communication cost is
more dominant than the increase of computation cost,
hence decreasing the total execution time.

Figure 4. Speedup Performance of DPiRC compared to SeqTS
and PI, using CN as iterative solver for n=49

No. of Processors

Sp
ee

du
p

	 The decrease of execution time is most apparent
in problem size where spatial parallelisation is limited
(n=49) as shown in Table 1 and Table 2. In this fine
granularity problem, using more than one processor
for spatial parallelisation (SeqTS with p>1) causes the
execution time to increase due to the high communication
to computation ratio. By using the proposed algorithm,
we have demonstrated that we still could achieve some
degree of efficiency when spatial parallelisation failed to
do so. As shown in Table 5 and Table 6, DPiRC algorithm
is able to maintain higher efficiency ranging from 45.8%
to 71.3% and 42.0% to 71.1% for the respective test cases
when spatial parallelisation alone caused the efficiency to
drop to as low as 7.8% and 8.3%. Similar results pattern
can also be seen in Table 7 and Table 8 for n=97. These
results demonstrated the feasibility and possible benefit of
parallelisation in time dimension when parallelisation in
space dimension alone failed to reduce the execution time.
However, the original pipelined iterations (PI) algorithm
has low efficiency in distributed memory computing
environment due to the algorithm’s nature of extensive
communication labor. By reducing the inter-time step

	 	 1047

communications in the proposed algorithm we achieved
better efficiency than the pipelined iterations algorithm, as
shown in Table 5 to Table 8.

Conclusion

In this paper, an improved pipelined algorithm has been
proposed for parallelising time stepping process in solving
time dependent problems and some preliminary results has
been reported. We have shown that the algorithm is most
beneficial for problems with limited spatial parallelisation
or when spatial parallelisation alone has reached the
efficiency limit. However, we see time parallelisation as
an addition to spatial parallelisation rather as a competitor.
We can and should combine both. If a given problem can
be parallelized efficiently through spatial decomposition
then a group of processors can be assigned to a time step.
More study will be carried out to further investigate and to
derive a performance analysis model of the algorithm. This
includes the determination of the optimal or near optimal
pipeline delay value, d.

Figure 5. Speedup Performance of DPiRC compared to SeqTS
and PI, using EG as iterative solver for n=97

No. of Processors

Sp
ee

du
p

Figure 7. Communication and sequential iteration counts for test cases of Table 1 for the first 20 time steps

Figure 6. Speedup Performance of DPiRC compared to SeqTS
and PI, using CN as iterative solver for n=97

No. of Processors

Sp
ee

du
p

References

Ali, N.H.M. & Ng, K.F. 2006. Explicit group PDE solvers in an
MPI environment. International Conference on Mathematical
Modelling and Computation, June 5-8, Universiti Brunei
Darussalam.

Bonomo, J.P. & Dyksen, W.R. 1981. Pipelined iterative methods
for shared memory machines. Technical Report 688,
Computer Science Department, Purdue University.

Frantziskonis, G., Muralidharan, K., Deymier, P., Simunovic,
S., Nukala, P. & Pannala S. 2009. Time-parallel multiscale/
multiphysics framework. J. Comput. Phys. 228: 8085-
8092.

Gropp, W., Lusk, E. & Skjellum, A. 1999. Using MPI: Portable
parallel programming with the message-passing interface.
Cambridge, MA: MIT Press.

Horton, G. & Vandewalle, S. 1995. A space-time multigrid
method for parabolic PDEs. SIAM J. Sci. Computing 16(4):
848-864.

Lions, J-L., Maday, Y. & Turinice, G. 2001. A “parareal” in time
discretization of PDE’s. C. R. Acad. Sci. Paris Ser. I Math.
332: 661-668.

Ng, K.F. & Ali, N.H.M. 2008. Performance analysis of
explicit group parallel algorithms for distributed memory
multicomputer. Parallel Computing 34(6-8): 427-440.

1048	

Pacheco, P.S. 1997. Parallel Programming with MPI. San
Francisco: Morgan Kaufmann Publishers.

Pormann, J.B., Board, J.A. Jr. & Rose, D.J. 1998. The implicit
pipeline method. Proceedings of the 12th. International
Parallel Processing Symposium on International Parallel
Processing Symposium. IEEE Computer Society, Washington,
DC 721-725.

Srinivasan, A. & Chandra, N. 2005. Latency tolerance through
parallelization of time in scientific applications. Parallel
Computing 31(7): 777-796.

Womble, D.E. 1990. A time stepping algorithm for parallel
computers. SIAM J. Sci. Computing 11(5): 824-837.

Zhu, J. 1994. Solving partial differential equations on parallel
computers. Singapore: World Scientific Publishing.

School of Mathematical Sciences
Universiti Sains Malaysia
11800 Penang
Malaysia

*Corresponding author; email: ngkokfu@gmail.com

Received:	 19 May 2009
Accepted:	 1 June 2010

